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Effect of asymmetry on stochastic resonance and stochastic resonance induced
by multiplicative noise and by mean-field coupling
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In the paper, we investigate the effect of asymmetry of the potential on stochastic resonance~SR! for a
model with an asymmetric bistable potential and driven by additive noise, the signal-to-noise ratio~SNR! for
a model with a monostable potential and driven by additive and multiplicative noises, and the SNR for a
mean-field coupled model with infinite globally coupling oscillators driven by additive noises. It is shown that
for the first model,the asymmetry of the potential can weaken the phenomenon of SR; for the second and third
models, a SR induced by multiplicative noise and a different one caused by mean-field coupling are found.
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I. INTRODUCTION

Noise-induced nonequilibrium phenomena in nonline
systems have recently attracted a great deal of attention
variety of contexts@1#. In general, these phenomena invol
a response of the system that is not only produced or
hanced by the presence of the noise, but that is optimized
certain values of the parameters of the noise. One examp
the ‘‘Brownian motors,’’ wherein for the Brownian motion i
stochastic spatial periodic potentials the spatial asymmetr
noise asymmetry leads to a systematic transport whose m
nitude and even direction can be tuned by parameters o
noise @2#. Another is the nonequilibrium transition for th
systems with finite or infinite coupled oscillators, whic
probably is a phase transition~the first order or second orde!
@3–5# or not @6#. For these systems, the most exciting is th
a reentrant second order phase transition has been foun
a general spatially extended model by Van den Broeck, P
rondo, and Toral@3#. Afterwards, this phenomenon has be
found in a lot of systems with coupled oscillators. A third
the resonant activation@7#, here the mean first passage tim
~MFPT! of a particle driven by~usually white! noise over a
fluctuating potential barrier exhibits a minimum as a functi
of the parameter of the fluctuating potential barrier~usually
the flipping rate of the fluctuating potential barrier!. A fourth
such phenomenon is the phenomenon of stochastic reson
@8–13#, the one of interest to us in this paper, wherein
response of a nonlinear system to a signal is enhanced b
presence of noise and maximized for certain values of
noise parameters.

Since the stochastic resonance was proposed by Benz
co-workers @8# to explain the periodic recurrences of th
earth’s ice ages, this phenomenon has been extensivel
vestigated from both the theoretical and experimental po
of view @9–13#.

There have been many theoretical developments of
chastic resonance in conventional bistable systems.
Namara and Wiesenfeld@10# have suggested a master equ
tion for the populations in two stable states. They conside
the signal-to-noise ratio~SNR!, i.e., the ratio of the peak
1063-651X/2002/66~3!/031104~7!/$20.00 66 0311
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height in the power spectrum to the noise background a
probe of the stochastic resonance effect. Zhou, Moss,
Jung@11# have suggested the escape time distribution to
scribe stochastic resonance. Jung and Ha¨nggi @12# described
stochastic resonance within the framework of nonstation
stochastic processes without restriction to small driving a
plitudes or frequencies, where they presented power spe
densities and signal amplification as measures of stocha
resonance.

However, the above theories for stochastic resonance~SR!
deal with the symmetric potential system driven by addit
noise, and SR is only induced by additive noise. When o
studies a practical problem, it is inevitable to meet the s
chastic asymmetric potential system, the system driven
multiplicative noise, and the stochastic coupling oscillato
system. So one can ask how the effect of the asymmetr
the potential on SR will be, and whether there will be S
induced by multiplicative noise and one by the coupli
among different oscillators. In this paper, we will investiga
these problems. Here we will use the SNR to represent
phenomenon of SR. To solve the above problems, the S
for system with asymmetric potential will be required~see
Secs. III, IV, and V!. So we will first derive the SNR for
system with asymmetric potential in Sec. II. Then in Sec.
we will study the effect of asymmetry of the potential on S
and in Secs. IV and V we will show a SR induced by mu
tiplicative noise and a one by mean-field coupling resp
tively.

II. THE SIGNAL-TO-NOISE RATIO

In this section, we derive the formula of the signal-t
noise ratio for a stochastic system~only driven by additive
noise and in dimensionless form! with asymmetric bistable
potential~see Fig. 1!. In Fig. 1,w1 andw2 are the transition
rates fromx1 to x2 and from x2 to x1 in absence of the
external signal. It is clear thatw1Þw2 . The mean first pas-
sage times fromx1 to x2 and vice versa are respectively@14#

T1~x1→x2!5
1

DE
x1

x2
dyeU(y)/D Èy

e2U(z)/Ddz, ~1!
©2002 The American Physical Society04-1
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T2~x2→x1!5
1

DE
x2

x1
dyeU(y)/DE

2`

y

e2U(z)/Ddz, ~2!

whereD is the additive noise strength. The transition ra
arew651/T6 . When adding the external signalA cosvt we
have the transitions rates~in the adiabatic limit!

w18 5DH E
x1

x2
dy exp$@U~y!2Ay cosvt#/D%

3 Èy

exp$2@U~z!2Azcosvt#/D%dzJ 21

, ~3!

w28 5DH E
x2

x1
dy exp$@U~y!2Ay cosvt#/D%

3E
2`

y

exp$2@U~z!2Azcosvt#/D%dzJ 21

. ~4!

FIG. 1. Asymmetric bistable potential in dimensionless for
The minima are atx1 and x2, the maximum atx0. The transition
rates fromx1 to x2 and vice versa arew2 andw1 .
03110
s

To the first order inA, from Eqs.~3! and ~4! we can obtain

w68 8
D

T6
S 11

A cosvt

D
M 6D , ~5!

in which M 65T1
6/T6 , T15*x1

x2*`
y exp$@U(y)

2U(z)#/D%dydz, T1
15*x1

x2*`
y (y2z)exp$@U(y)2U(z)#/D%dydz,

T25*x2

x1*2`
y exp$@U(y)2U(z)#/D%dydz, and T1

25*x2

x1*2`
y (y

2z)exp$@U(y)2U(z)#/D%dydz.
We definen2512n15*2`

` xp(x)dx, here p(x) is the
stationary probability density. Then the governing rate eq
tion is just

dn1

dt
52

dn2

dt
5w28 ~ t !n22w18 ~ t !n1

5w28 2@w28 ~ t !1w18 ~ t !#n1 . ~6!

Substituting Eq.~5! into Eq. ~6!, and solving equation, we
can get

n1~ tux0 ,t0!5@X2A cos~vt01f1!2X1A cos~vt02f!

1AX3 sinvt2X01dx0x1
#e2Q0(t2t0)

1@X1A cos~vt2f!2X2A cos~vt1f1!

2AX3 sinvt1X0#, ~7!

where X05D/(T2Q0), X15M 2/(T2AQ0
21v2), X2

5Q1D/(T2vAQ0
21v2), X35(Q1 /v)X0 , f5tg21(v/

Q0), f15tg21(Q0 /v), Q05D(@1/T2#1@1/T1#), and
Q15(M 1/T1)1(M 2/T2). From Eq.~7! the average auto
correlation function can be computed as follows:

.

^^x~ t !x~ t1t!&& t5
v

2pE0

2p/v

^x~ t !x~ t1t!&dt

5
v

2pE0

2p/v

lim
t0→2`

^x~ t !x~ t1t!ux0 ,t0&dt5
v

2pE0

2p/v

lim
t0→2`

@x1
2n1~ t1tux1 ,t !n1~ tux0 ,t0!

1x1x2n1~ t1tux2 ,t !n2~ tux0 ,t0!1x1x2n2~ t1tux1 ,t !n1~ tux0 ,t0!1x2
2n2~ t1tux2 ,t !n2~ tux0 ,t0!#dt

5x1
2@X0

21A2B1 cosvt1~A2B21B3!e2Q0t1B4A2 sinvte2Q0t1B5A2 cosvte2Q0t#

22x1x2@X0
21A2B1 cosvt1~A2B21B3!e2Q0t1B4A2 sinvte2Q0t1B5A2 cosvte2Q0t22X0#

1x2
2@11X0

21A2B1 cosvt1~A2B21B3!e2Q0t1B4A2 sinvte2Q0t1B5A2 cosvte2Q0t22X0#, ~8!
4-2
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in which

M15x1
2X0

222x1x2X0
212x1x2X01x2

21x2
2X0

222x2
2X0 ,

M25x1
2B1A222x1x2B1A21x2

2B1A2,

M35x1
2~A2B21B3!22x1x2~A2B21B3!1x2

2~A2B21B3!,

M45x1
2B4A222x1x2B4A21x2

2B4A2,

and

M55x1
2B5A222x1x2B5A21x2

2B5A2,

with

B15
1

2
~X1

21X2
21X3

2!2X1X2 cos~f1f1!2X1X3 sinf

2X2X3 sinf1 ,

B252
1

2
~X1

21X2
2!1X1X2 cos~f1f1!1X1X3 sinf

1
1

2
X2X3 sinf1 ,

B35X0~12X0!,

B45
1

2
@X1X3 cosf2X2X3 cosf1#,

and

B55
1

2
@X1X3 sinf1X2X3 cosf12X3

2#.

The power spectrum is

s~V!5^s~V!& t1^s~2V!& t52M1d~V!12pM2~v!d~V

2v!1
4M3~v!Q0

Q0
21V2

2M5~v!S Q0

Q0
21~V2v!2

1
Q0

Q0
21~V1v!2D

5Gs
(0)d~V!1Gs

(1)~v!d~V2v!1GN
(1)~v,V!, ~9!

where^s(V)& t5*2`
` ^^x(t)x(t1t)&& te

2 iVtdt.
So the signal-to-noise ratioR1 can be obtained

R15U Gs
(1)~v!

GN
(1)~v,V!

U
V5v

5
pM2

2M3Q0

Q0
21v2

1M5S Q0

Q0
21v2

1
1

Q0
D .

~10!

Notice that the spectrum~9! divides naturally into three
parts: the zero-frequency output that is ad function at the
03110
zero frequency.@This part is produced by the asymmetry
the bistable potential~If the bistable potential is symmetric
we haveM150.!#; the signal output that is ad function at
the signal frequency; and the broadband noise outputs
are three Lorentzian bumps centered atV50, V52v, and
V5v, respectively.

In our calculation, we have used the adiabatic approxim
tion for the transition rate. So our formula~10! is restricted
to the condition: the signal frequency is much slower th
the inverse value of the relaxation timet ~for double-well
system,t is the time for probability within one well to
equilibrate!. In addition, the other valid conditions for th
formula ~10! are:~1! A/D!1, which is same as that in Re
@10#; and ~2! h1;h2 @see Fig. 1. Ifh1@h2 ~or h1!h2),
the formula~10! will be invalid#.

III. MODEL I: EFFECT OF THE ASYMMETRY ON SR

Now we consider a special model whose Langevin eq
tion is ~in dimensionless form!

ẋ52]xU~x!1h~ t !, ~11!

where U(x)5 1
4 x42 1

2 x22 1
3 ax3, which is an asymmetric

bistable potential, andh(t) is noise with zero mean and co
relation function ^h(t)h(t8)&52Dd(t2t8). When a
50, U(x) is symmetric bistable; with the increase of th
absolute value ofa, U(x) becomes more and more asym
metric. Here we can useuau to describe the asymmetry of th
bistable potential.

If inputting an external periodic signalF5A cosvt, we
can obtain the phenomenon of SR. In Fig. 2 we plot
signal-to-noise ratio versus the additive noise strength
different values ofa (a50, 60.3, and60.5). The figure
shows that the asymmetry of the bistable potential c
weaken the phenomenon of SR.

If the potential has only one well, no phenomenon of S
appears. If the potential has three or more wells, the phen
enon of SR can emerge. For this case, we study several o
examples by using the formula~10!. @Now the formula~10!
is still applicable, but we should usew6

(1)1w6
(2)1••• to re-

placew68 , wherew1
(1) ,w1

(2) , . . . are the transition rates from

FIG. 2. The signal-to-noise ratio versus the additive no
strengthD in dimensionless form withv50.0005,A50.001, and
a50, 60.3, and60.5 for the model I.
4-3
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the first well to the second well~the particle moves from the
right to the left!, from the second well to the third wel
. . . . . . , andw2

(1) ,w2
(2) , . . . are the transition rates fo

vice versa#. Study shows that the asymmetry of the potenti
can induce the phenomenon of SR to change. It is de
mined by the term in the Langevin equation, which induc
the asymmetry of the potentials, how the phenomenon of
changes. For our model~11!, it is the effect of the termax2

on the system that the phenomenon of SR can be weake
Because of the variety of the change for the asymmetry
the potentials, here we cannot exclude the case that
asymmetry of the potentials has no effect on the phen
enon of SR. or has more complex effect on this phenomen

IV. MODEL II: SR INDUCED BY MULTIPLICATIVE
NOISE

In this section, we study a model with monostable pot
tial driven simultaneously by additive and multiplicativ
noises. The Langevin equation of the model is~in dimension-
less form!

ẋ52x322x21xj~ t !1h~ t !, ~12!

in which j(t) and h(t) are respectively the multiplicative
and additive noises with zero means and correlation fu
tions ^j(t)h(t8)&50, ^j(t)j(t8)&52D1d(t2t8), and
^h(t)h(t8)&52Dd(t2t8).

The Fokker-Planck equation of Eq.~12! is

] tP~x,t !52]x~2x322x2!P~x,t !1D1]xx]xxP~x,t !

1D]x
2P~x,t !. ~13!

The stationary solution of Eq.~13! is

Ps~x!5Me2Ue f f(x)/D, ~14!

where Ue f f(x)5*x$(x312x21D1x)/@(D1 /D)x211#%dx,
which is the stationary effective potential of the system, a
M is the normalization constant.

If we only consider the stationary state, Eq.~12! can be
written as

ẋ52]xUe f f~x!1h~ t !. ~15!

If inputting an external signalA cosvt to Eq. ~12!, the cor-
responding equation for Eq.~15! becomes

ẋ52]xUe f f~x!1h~ t !1
A cosvt

D1

D
x211

. ~16!

In Eq. ~16! the external signal depends onx, so the for-
mula ~10! of the SNR is not applicable to it. But if we use

T̄1
15E

x1

x2 È2`AD

D1
F tg21SAD1

D
yD 2tg21SAD1

D
zD G

3exp$@Ue f f~y!2Ue f f~z!#/D%dydz,
03110
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T̄1
15E

x2

x1E
2`

` AD

D1
F tg21SAD1

D
yD 2tg21SAD1

D
zD G

3exp$@Ue f f~y!2Ue f f~z!#/D%dydz

to replaceT1
1 andT1

2 respectively in Eqs.~5!, ~7!–~10!, the
corresponding formula will be applicable to Eq.~16!. The
SNR versus the additive noise strengthD is plotted in Fig. 3
with D150.7 @in order to make our calculation satisfy th
valid conditionh1;h2 of the effective potential for the for-
mula ~10!, in this figure we set the multiplicative nois
strength asD150.7#. The figure shows that there is the ph
nomenon of stochastic resonance. But this phenomeno
stochastic resonance is different from the one for mode
since it is a different one caused by the multiplicative noi
In the absence of the multiplicative noise, there is no p
nomenon of stochastic resonance. In addition, we find tha
is not for all the cases of Eq.~12! there is the phenomenon o
stochastic resonance. This can be observed from the stru
of the effective potentialUe f f(x) of Eq. ~12!, which indicates
that only when 0,D1,1 this phenomenon can appear.

Below we consider the cases when the multiplicat
noise j(t) is other types of noise, such asO-U noise, di-
chotomous noise, and Poisson noise.

If j(t) is O-U noise with zero mean and correlation fun
tion ^j(t)j(t8)&5(D1 /t)exp(2ut2t8u/t), one can obtain the
following approximate Fokker-Planck equation for sm
correlation timet applying the UCNA to the Eq.~12! @15#

] tP~x,t !52]xA~x!P~x,t !1]x
2B~x!P~x,t !,

where

A~x!5
2x322x2

112t~x21x!
1

2D1x

@112t~x21x!#2

2
2t~2x11!~D1x21D !

@112t~x21x!#3
,

FIG. 3. The signal-to-noise ratio versus the additive no
strength D in dimensionless form with the multiplicative nois
strengthD150.7, A50.001, andv50.0005 for the model II.
4-4
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B~x!5
D1x21D

@112t~x21x!#2
.

The stationary effective potential is

Ue f f~x!5DEx

@]xB~x!2A~x!#/B~x!dx.

Then, using the method proposed by us in this section
can calculate the SNR when inputting an external perio
signal F5A cosvt. Calculation indicates that there is th
phenomenon of SR induced by the multiplicativeO-U noise.
@In addition, we still note that the correlation timet of the
multiplicative O-U noise for model~12! can enhance the
phenomenon of SR#.

If j(t) is dichotomous noise or Poisson noise, because
values of noise are allowed to take on two discrete value
more discrete values, the phenomenon of SR can ap
even if the system is linear@16#. Now the phenomenon of SR
is also induced by the multiplicative noise.

V. MODEL III: SR INDUCED BY MEAN-FIELD
COUPLING

In this section, we consider a system with infinite globa
coupled oscillators. The Langevin equations of the oscillat
are ~in dimensionless form!

ẋi52xi
31xi

21
3

2
xis1h i~ t !, i 51,2,3, . . . , ~17!

wheres is the mean field ands5 limN→`(1/N)( i 51
N xi , and

h i(t) are the noise that is similar to the one in Eq.~11!. In
Eq. ~17! the coupling parameter is taken as 3/2, which is
the sake of making the potential of Eq.~17! satisfy the valid
conditionh1;h2 for the formula~10!.

In the case ofN→`, all the oscillators have an identica
evolution given by the nonlinear stochastic equation

ẋ52x31x21
3

2
xs1h~ t !, ~18!

in which s(t)5^x(t)&, which represents the time-depende
order parameter.

The Stratonovich interpretation for Eq.~18! yields the
Fokker-Planck Equation

] tP~x,s,t !52]xS 2x31x21
3

2
sxD P~x,s,t !

1D]x
2P~x,s,t !. ~19!

Under the natural boundary condition, the stationary solut
of Eq. ~19! is

P~x,s!5M0e2U(x,s)/D, ~20!
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whereU(x,s)5 1
4 x42 1

3 x32 3
4 sx2, andM0 is a normalization

constant.
In the limit of N→`, the self-consistent Weiss mean-fie

approach of Desai and Zwanzig is valid@17# and the Weiss
mean field has to comply with the condition

s5E
2`

`

xP~x,s!dx, ~21!

this is a self-consistency equation whose solution yields
dependence ofs with the system parameters.

We first turn to a more detailed analysis of Eq.~21!. The
trivial solution s50 does not exist. The Eq.~21! only has
nonzero solutionsÞ0. Thus for the model~17!, there is no
nonequilibrium transition between the states50 and the
statesÞ0.

When adding an external periodic signalA cosvt we can
calculate the SNR of this model from the formula~10!. In
Fig. 4, the SNR versusD is plotted. From the figure we ca
find that there is the phenomenon of stochastic resonanc
the SNR versus the additive noise strength. If we do
consider the coupling, this phenomenon is absent@the poten-
tial function of Eq.~17! will be monostable#. So the phenom-
enon of stochastic resonance appearing here is a diffe
one, which is caused by the mean-field coupling.

We have noted that in Ref.@18# Zaikin, Kurths, and
Schimansky-Geier investigated a mean-field coupled mo
~a nonlinear lattice of coupled overdamped oscillators! and
found stochastic resonance for the symmetric bistable m
field in the presence of small periodic signal. They called t
effect doubly stochastic resonance. For our model~17!, there
is no such phenomenon~the mean field is not bistable!.
Moreover, in order to determine if all the mean-field coupl
models with asymmetric two-well~or multiwell! potential
have the phenomenon of stochastic resonance, we have m
a lot of numerical calculations for different models. We fin
that for some models there is the phenomenon of stocha
resonance, but for others there is not this phenomenon e
if the potential is two well~or multiwell!. Below we give a
example for a mean-field coupled model with asymme

FIG. 4. The signal-to-noise ratio versus the additive no
strengthD in dimensionless form withv50.0005 andA50.001 for
the model III.
4-5
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JING-HUI LI PHYSICAL REVIEW E 66, 031104 ~2002!
two-well potential but without the phenomenon of stochas
resonance. The Langevin equations of the model are

ẋi52xi
31~xi

21xi !s1h i~ t !, ~ i 51,2,3, . . . !, ~22!

wheres andh i(t) are same as the ones in Eq.~17!. In Figs.
5~a! and 5~b!, we plot the mean fields versus the additi
noise strengths for the models~17! and ~22! respectively.
From the figures we can find that for the model~17! the
mean field decreases progressively with the increase of
additive noise strength; while for the model~22! the mean
field increases successively with increasing the addi
noise strength. It is just because of the difference of
change of the mean fields for different models with varyi

FIG. 5. The mean fields versus the additive noise strength
dimensionless form for the model III~a!, the model~22! ~b!, and the
signal-to-noise ratio versus the additive noise strength in dim
sionless form withv50.0005 andA50.001 for the model~22! ~c!.
03110
c
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the additive noise strength that causes for the model~17!
there is the phenomenon of stochastic resonance, but fo
model~22! there is not. To illustrate there is not the pheno
enon of stochastic resonance for the model~22!, in Fig. 5~c!
we depict the SNR as a function ofD.

VI. CONCLUSION AND DISCUSSION

In conclusion, we have studied the effect of asymmetry
the potential on SR for a model with an asymmetric bista
potential and driven by additive noise, the SNR for a mo
with a monostable potential and driven by additive and m
tiplicative noises, and the SNR for a mean-field coup
model with infinite globally coupling oscillators driven b
additive noises. For the first model, we find that the asy
metry of the potential can weaken the phenomenon of
for the second and third models, we find a phenomenon
SR induced by multiplicative noise different a new one
the mean-field coupling.

In Sec. II, we derive a formula for the signal-to-noise ra
by using the adiabatic approximation for system with asy
metric bistable potential. Although this formula is derived f
the system with asymmetric bistable potential, it is app
cable to the systems with asymmetric multiwell~three or
more wells! potential. In addition, in our calculation for thi
formula we only approximatew68 to the first order inA. If
we consider the high order, the power spectrum formula w
contain the terms of high frequencies. For example, if
approximatew68 to the nth order inA, the power spectrum
will become

s~V!5Gs
(0)d~V!1(

i 51

n

@Gs
( i )~ iv!d~V2 iv!1GN

( i )~ iv,V!#.

~23!

Then the signal-to-noise ratioRi at the frequenciesiv is

Ri5U Gs
( i )~ iv!

(
i 50

n

GN
( i )~ iv,V!U

V5 iv

, i 51,2,3, . . . ,n. ~24!

In Eq. ~24! owing to A/D!1, we can getR1@R2@•••

@Rn .
In Sec. IV, we propose a method to calculate the SNR

a system simultaneously driven by additive and multiplic
tive noises. We note that in Ref.@19#, Jia, Yu, and Li inves-
tigated stochastic resonance for a symmetric bistable sys
with additive and multiplicative noises and calculated t
SNR for the system. Our model II is different from the on
studied in Ref.@19# even though they are both driven b
additive and multiplicative noises. The former has a bista
potential, while the latter has a monostable one. In additi
in our calculation we have not used the approximate Kram
time, but in the calculation made by Jia, Yu, and Li th
have.

in

n-
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Finally, it must been mentioned that for the formula~10!

the adiabatic approximation is valid only whenv!U9(x1)
and U9(x2) ~in dimensionless form!. In our calculation, in
order to satisfy this condition we take a very small value
v (v50.0005).
k,

e

l,

S.

on

.

.

a

03110
f

ACKNOWLEDGMENTS

I benefitted from discussions with scientific workers
Lehrstuhl für Theoretische Physik I of Universita¨t Augsburg,
especially with Peter Reimann. This research was suppo
by the Alexander von Humboldt Foundation.
s

v.

-

oss,

s,

v.
@1# Noise and Order: The New Synthesis, edited by M. Millonas
~Springer-Verlag, New York, 1996!.

@2# M. O. Magnasco, Phys. Rev. Lett.71, 1477~1993!; P. Hänggi,
and J. G. Kissner, Europhys. Lett.28, 459 ~1994!; C. R. Do-
ering, W. Horsthemke, and J. Riordan, Phys. Rev. Lett.72,
2984 ~1994!; R. D. Astumian and M. Bier,ibid. 72, 1766
~1994!; M. M. Millonas and C. Ray,ibid. 75, 1110~1995!; R.
Bartussek, P. Reimann, Phys. Rep.290, 149 ~1997!; M. M.
Millonas and D. R. Chialvo, Phys. Rev. Lett.76, 550 ~1996!;
E58, 139 ~1998!; P. Reimann, R. Kawai, C. Van den Broec
and P. Ha¨nggi, Europhys. Lett.45, 545 ~1999!; Rolf H.
Luchsinger, Phys. Rev. E62, 272~2000!; Jing-hui Li and Z. Q.
Huang,ibid. 57, 3917~1998!.

@3# C. Van den Broeck, J. M. R. Parrondo, and R. Toral, Phys. R
Lett. 73, 3395~1994!.

@4# F. Castro, A. D. Sanchez, and H. S. Wio, Phys. Rev. Lett.75,
1691~1995!; C. Van den Broeck, J. M. R. Parrondo, R. Tora
and R. Kawai, Phys. Rev. E55, 4084 ~1997!; R. Müller, K.
Lippert, A. Kühnel, and U. Behn,ibid. 56, 2658 ~1997!; 58,
2838 ~1998!; S. E. Mangioni, R. R. Deza, R. Toral, and H.
Wio, ibid. 61, 223 ~2000!; Jing-hui Li and Z. Q. Huang,ibid.
53, 3315~1996!.

@5# Jing-hui Li and Z. Q. Huang, Phys. Rev. E58, 2838~1998!.
@6# S. Pikovsky, K. Rateitschak, and J. Kurths, Z. Phys. B: C

dens. Matter95, 541 ~1994!; Jing-hui Li and Z. Q. Huang,
Phys. Rev. E58, 2760~1998!.

@7# C. R. Doering and J. C. Gadoua, Phys. Rev. Lett.69, 2318
~1992!; M. Bier and R. D. Astumian,71, 1649 ~1993!; U.
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